A graphic approach to identities induced from multi-trace Einstein-Yang-Mills amplitudes


الملخص بالإنكليزية

Symmetries of Einstein-Yang-Mills (EYM) amplitudes, together with the recursive expansions, induce nontrivial identities for pure Yang-Mills amplitudes. In the previous work cite{Hou:2018bwm}, we have already proven that the identities induced from tree level single-trace EYM amplitudes can be precisely expanded in terms of BCJ relations. In this paper, we extend the discussions to those identities induced from all tree level emph{multi-trace} EYM amplitudes. Particularly, we establish a refined graphic rule for multi-trace EYM amplitudes and then show that the induced identities can be fully decomposed in terms of BCJ relations.

تحميل البحث