Pacific shallow lagoon high-resolution temperature observations


الملخص بالإنكليزية

The daily cycle of heating and cooling of the near-surface ocean may be quite different in a shallow lagoon with a few meters deep seafloor that can be heated directly by the sun. If important, the solar radiation will affect the local benthic communities. To study the physical processes associated with the daily cycle of south-Pacific lagoon Bora Bora, a vertical string of five high-resolution temperature sensors was moored at a 2-m deep site for 3 weeks. Besides the standard ocean warming (approximately during daytime) and cooling (approximately nighttime), the sensors show relatively highest temperature near the lagoon-floor during the warming phase and a weakly stable stratification towards the end of the cooling phase. During the warming phase, highly variable stratification is observed extending into the water column under calm weather and turbid waters, otherwise not. Under trade wind and clear waters, the lowest sensor(s) show(s) consistently higher temperature variability than sensors higher-up with spectral slopes indicative of shear- and/or convective turbulence. During the cooling phase, the lower sensor shows consistently very low variance (non-turbulent), while other sensors show a spectral slope around the buoyancy frequency evidencing weakly stratified waters supporting internal waves. These observations contrast with open-ocean near-surface observations of stable stratification during the warming phase and of turbulent free convection during the cooling phase. Thus, lagoons seem to more resemble the atmosphere than the ocean in daytime thermodynamics and possibly act as a natural solar pond with bottom conductive heating (when salinity compensates for unstable temperature variations).

تحميل البحث