The retarded Green function for linear field perturbations of black hole spacetimes is notoriously difficult to calculate. One of the difficulties is due to a Dirac-$delta$ divergence that the Green function possesses when the two spacetime points are connected by a direct null geodesic. We present a procedure which notably aids its calculation in the case of Schwarzschild spacetime by separating this direct $delta$-divergence from the remainder of the retarded Green function. More precisely, the method consists of calculating the multipolar $ell$-modes of the direct $delta$-divergence and subtracting them from the corresponding modes of the retarded Green function. We illustrate the usefulness of the method with some specific calculations in the case of the scalar Green function and self-field for a point scalar charge in Schwarzschild spacetime.