Detectability of 21cm signal during the Epoch of Reionization with 21cm-Lyman-${alpha}$ emitter cross-correlation. III. Model dependence


الملخص بالإنكليزية

Detecting $rm H_I$ 21cm line in the intergalactic medium (IGM) during the Epoch of Reionization (EoR) suffers from foreground contamination such as Galactic synchrotron and extragalactic radio sources. Cross-correlation between the 21cm line and Lyman-$alpha$ emitter (LAE) galaxies is a powerful tool to identify the 21cm signal since the 21cm line emission has correlation with LAEs while the LAEs are statistically independent of the foregrounds. So far, the detectability of 21cm-LAE cross-power spectrum has been investigated with simple LAE models where the observed Ly$alpha$ luminosity is proportional to the dark matter halo mass. However, the previous models were inconsistent with the latest observational data of LAEs obtained with Subaru/Hyper Suprime-Cam (HSC). Here, we revisit the detectability of 21cm-LAE cross-power spectrum adopting a state-of-the-art LAE model consistent with all Subaru/HSC observations such as the Ly$alpha$ luminosity function, LAE angular auto-correlation, and the LAE fractions in the continuum selected galaxies. We find that resultant cross-power spectrum with the updated LAE model is reduced at small scales ($ksim 1 rm Mpc^{-1}$) compared to the simple models, while the amplitudes at large scales ($k lesssim 0.2 rm Mpc^{-1}$) are not affected so much. We conclude that the large-scale signal would be detectable with Square Kilometre Array (SKA) and HSC LAE cross-correlation but detecting the small scale signal would require an extended HSC LAE survey with an area of $sim 75 rm deg^2$ or 3000 hrs observation time of 21cm line with SKA.

تحميل البحث