The quantum plane is the non-commutative polynomial algebra in variables $x$ and $y$ with $xy=qyx$. In this paper, we study the module variety of $n$-dimensional modules over the quantum plane, and provide an explicit description of its irreducible components and their dimensions. We also describe the irreducible components and their dimensions of the GIT quotient of the module variety with respect to the conjugation action of ${rm GL}_n$.