Propagation of Alfven waves in the expanding solar wind with the fast-slow stream interaction


الملخص بالإنكليزية

We carry out two-dimensional magnetohydrodynamic (MHD) simulations of an ensemble of Alfvenic fluctuations propagating in a structured, expanding solar wind including the presence of fast and slow solar wind streams. Using an appropriate expanding box model, the simulations incorporate the effects of fast-slow stream shear and compression and rarefaction self-consistently. We investigate the radial and longitudinal evolution of the cross-helicity, the total and residual energies and the power spectra of outward and inward Alfvenic fluctuations. The stream interaction is found to strongly affect the radial evolution of Alfvenic turbulence. The total energy in the Alfven waves is depleted within the velocity shear regions, accompanied by the decrease of the normalized cross-helicity. The presence of stream-compression facilitates this process. Residual energy fluctuates around zero due to the correlation and de-correlation between the inward/outward waves but no net growth or decrease of the residual energy is observed. The radial power spectra of the inward/outward Alfven waves show significant longitudinal variations. Kolmogorov-like spectra are developed only inside the fast and slow streams and when both the compression and shear are present. On the other hand, the spectra along the longitudinal direction show clear Kolmogorov-like inertial ranges in all cases.

تحميل البحث