The hot disk transient plane source (TPS) method is a widely used standard technique (ISO 22007-2) for the characterization of thermal properties of materials, especially the thermal conductivity, k. Despite its well-established reliability for a wide variety of common materials, the hot disk TPS method is also known to suffer from a substantial systematic errors when applied to low-k thermal insulation materials. Here, we present a combined numerical and experimental study on the influence of the geometry of hot disk sensor on measured value of low-k materials. We demonstrate that the error is strongly affected by the finite thickness and thermal mass of the sensors insulation layer was well as the corresponding increase of the effective heater size beyond the radius of the embedded metal heater itself. We also numerically investigate the dependence of the error on the sample thermal properties, confirming that the errors are worse in low-k samples. A simple correction function is also provided, which converts the apparent (erroneous) result from a standard hot disk TPS measurement to a more accurate value. A standard polyimide sensor was also optimized using both wet and dry etching to provide more accurate measurement directly. Experimentally corrected value of k for Airloy x56 aerogel and a commercial silica aerogel using the numerical correction factor derived based on the standard TPS sensor is in excellent agreement with the directly measured value from the TPS sensor using the optimized polyimide sensor. Both of these methods can reduce the errors to less than 4% as compared to around 40% error of overestimation from raw values measured with the pristine sensor. Such results show that both the numerical correction to a pristine senor or an optimized sensor are capable of providing highly accurate value of thermal conductivity for such materials.