An ergodic theorem for quantum processes with applications to matrix product states


الملخص بالإنكليزية

Any quantum process is represented by a sequence of quantum channels. We consider ergodic processes, obtained by sampling channel valued random variables along the trajectories of an ergodic dynamical system. Examples of such processes include the effect of repeated application of a fixed quantum channel perturbed by arbitrary correlated noise, or a sequence of channels drawn independently and identically from an ensemble. Under natural irreducibility conditions, we obtain a theorem showing that the state of a system evolving by such a process converges exponentially fast to an ergodic sequence of states depending on the process, but independent of the initial state of the system. As an application, we describe the thermodynamic limit of ergodic matrix product states and prove that the 2-point correlations of local observables in such states decay exponentially with their distance in the bulk. Further applications and physical implications of our results are discussed in the companion paper [11].

تحميل البحث