Exact SUSY Wilson loops on $S^3$ from $q$-Virasoro constraints


الملخص بالإنكليزية

Using the ideas from the BPS/CFT correspondence, we give an explicit recursive formula for computing supersymmetric Wilson loop averages in 3d $mathcal{N}=2$ Yang-Mills-Chern-Simons $U(N)$ theory on the squashed sphere $S^3_b$ with one adjoint chiral and two antichiral fundamental multiplets, for specific values of Chern-Simons level $kappa_2$ and Fayet-Illiopoulos parameter $kappa_1$. For these values of $kappa_1$ and $kappa_2$ the north and south pole turn out to be completely independent, and therefore Wilson loop averages factorize into answers for the two constituent $D^2 times S^1$ theories. In particular, our formula provides results for the theory on the round sphere when the squashing is removed.

تحميل البحث