Let $R$ be the associative $k$-algebra generated by two elements $x$ and $y$ with defining relation $yx=1$. A complete description of simple modules over $R$ is obtained by using the results of Irving and Gerritzen. We examine the short exact sequence $0rightarrow Urightarrow E rightarrow Vrightarrow 0$, where $U$ and $V$ are simple $R$-modules. It shows that nonsplit extension only occurs when both $U$ and $V$ are one-dimensional, or, under certain condition, $U$ is infinite-dimensional and $V$ is one-dimensional.