Form factors for $alpha+{^{12}}$C inelastic scattering are obtained within two theoretical ($alpha+alpha+alpha$) approaches: The hyperspherical framework for three identical bosons, and the algebraic cluster model assuming the $D_{3h}$ symmetry of an equilateral triangle subject to rotations and vibrations. Results show a good agreement, with form factors involving the Hoyle state having a slightly larger extension within the hyperspherical approach. Coupled-channel calculations using these form factors are ongoing.