Spin pumping is a widely recognized method to generate the spin current in the spintronics, which is acknowledged as a fundamentally dynamic process equivalent to the spin-transfer torque. In this work, we theoretically verify that the oscillating spin current can be pumped from the microwave-motivated breathing skyrmion. The skyrmion spin pumping can be excited by a relatively low frequency compared with the ferromagnetic resonance (FMR) and the current density is larger than the ordinary FMR spin pumping. Based on the skyrmion spin pumping, we build a high reading-speed racetrack memory model whose reading speed is an order of magnitude higher than the SOT (spin-orbit torque) /STT (spin-transfer torque) skyrmion racetrack. Our work explored the spin pumping phenomenon in the skyrmion, and it may contribute to the applications of the skyrmion-based device.