Real Time Dynamics and Confinement in the $mathbb{Z}_{n}$ Schwinger-Weyl lattice model for 1+1 QED


الملخص بالإنكليزية

We study the out-of-equilibrium properties of $1+1$ dimensional quantum electrodynamics (QED), discretized via the staggered-fermion Schwinger model with an Abelian $mathbb{Z}_{n}$ gauge group. We look at two relevant phenomena: first, we analyze the stability of the Dirac vacuum with respect to particle/antiparticle pair production, both spontaneous and induced by an external electric field; then, we examine the string breaking mechanism. We observe a strong effect of confinement, which acts by suppressing both spontaneous pair production and string breaking into quark/antiquark pairs, indicating that the system dynamics displays a number of out-of-equilibrium features.

تحميل البحث