Constant factor approximation of MAX CLIQUE


الملخص بالإنكليزية

MAX CLIQUE problem (MCP) is an NPO problem, which asks to find the largest complete sub-graph in a graph $G, G = (V, E)$ (directed or undirected). MCP is well known to be $NP-Hard$ to approximate in polynomial time with an approximation ratio of $1 + epsilon$, for every $epsilon > 0$ [9] (and even a polynomial time approximation algorithm with a ratio $n^{1 - epsilon}$ has been conjectured to be non-existent [2] for MCP). Up to this date, the best known approximation ratio for MCP of a polynomial time algorithm is $O(n(log_2(log_2(n)))^2 / (log_2(n))^3)$ given by Feige [1]. In this paper, we show that MCP can be approximated with a constant factor in polynomial time through approximation ratio preserving reductions from MCP to MAX DNF and from MAX DNF to MIN SAT. A 2-approximation algorithm for MIN SAT was presented in [6]. An approximation ratio preserving reduction from MIN SAT to min vertex cover improves the approximation ratio to $2 - Theta(1/ sqrt{n})$ [10]. Hence we prove false the infamous conjecture, which argues that there cannot be a polynomial time algorithm for MCP with an approximation ratio of any constant factor.

تحميل البحث