Star formation at the edge of the Local Group: a rising star formation history in the isolated galaxy WLM


الملخص بالإنكليزية

We present the star formation history (SFH) of the isolated (D~970 kpc) Local Group dwarf galaxy WLM measured from color-magnitude diagrams constructed from deep Hubble Space Telescope imaging. Our observations include a central (0.5 $r_h$) and outer field (0.7 $ r_h$) that reach below the oldest main sequence turnoff. WLM has no early dominant episode of star formation: 20% of its stellar mass formed by ~12.5 Gyr ago (z~5). It also has an SFR that rises to the present with 50% of the stellar mass within the most recent 5 Gyr (z<0.7). There is evidence of a strong age gradient: the mean age of the outer field is 5 Gyr older than the inner field despite being only 0.4 kpc apart. Some models suggest such steep gradients are associated with strong stellar feedback and dark matter core creation. The SFHs of real isolated dwarf galaxies and those from the the Feedback In Realistic Environment suite are in good agreement for $M_{star}(z=0) sim 10^7-10^9 M_{odot}$, but in worse agreement at lower masses ($M_{star}(z=0) sim 10^5-10^7 M_{odot}$). These differences may be explainable by systematics in the models (e.g., reionization model) and/or observations (HST field placement). We suggest that a coordinated effort to get deep CMDs between HST/JWST (crowded central fields) and WFIRST (wide-area halo coverage) is the optimal path for measuring global SFHs of isolated dwarf galaxies.

تحميل البحث