On the Shafarevich Group of Restricted Ramification Extensions of Number Fields in the Tame Case


الملخص بالإنكليزية

Let $K$ be a number field and $S$ a finite set of places of $K$. We study the kernels $Sha_S$ of maps $H^2(G_S,fq_p) rightarrow oplus_{vin S} H^2(G_v,fq_p)$. There is a natural injection $Sha_S hookrightarrow CyB_S$, into the dual $CyB_S$ of a certain readily computable Kummer group $V_S$, which is always an isomorphism in the wild case. The tame case is much more mysterious. Our main result is that given a finite $X$ coprime to $p$, there exists a finite set of places $S$ coprime to $p$ such that $Sha_{Scup X} stackrel{simeq}{hookrightarrow} CyB_{Scup X} stackrel{simeq}{twoheadleftarrow} CyB_X hookleftarrow Sha_X$. In particular, we show that in the tame case $Sha_Y$ can {it increase} with increasing $Y$. This is in contrast with the wild case where $Sha_Y$ is nonincreasing in size with increasing $Y$.

تحميل البحث