STA: Adversarial Attacks on Siamese Trackers


الملخص بالإنكليزية

Recently, the majority of visual trackers adopt Convolutional Neural Network (CNN) as their backbone to achieve high tracking accuracy. However, less attention has been paid to the potential adversarial threats brought by CNN, including Siamese network. In this paper, we first analyze the existing vulnerabilities in Siamese trackers and propose the requirements for a successful adversarial attack. On this basis, we formulate the adversarial generation problem and propose an end-to-end pipeline to generate a perturbed texture map for the 3D object that causes the trackers to fail. Finally, we conduct thorough experiments to verify the effectiveness of our algorithm. Experiment results show that adversarial examples generated by our algorithm can successfully lower the tracking accuracy of victim trackers and even make them drift off. To the best of our knowledge, this is the first work to generate 3D adversarial examples on visual trackers.

تحميل البحث