Averages Along the Primes: Improving and Sparse Bounds


الملخص بالإنكليزية

Consider averages along the prime integers $ mathbb P $ given by begin{equation*} mathcal{A}_N f (x) = N ^{-1} sum_{ p in mathbb P ;:; pleq N} (log p) f (x-p). end{equation*} These averages satisfy a uniform scale-free $ ell ^{p}$-improving estimate. For all $ 1< p < 2$, there is a constant $ C_p$ so that for all integer $ N$ and functions $ f$ supported on $ [0,N]$, there holds begin{equation*} N ^{-1/p }lVert mathcal{A}_N frVert_{ell^{p}} leq C_p N ^{- 1/p} lVert frVert_{ell^p}. end{equation*} The maximal function $ mathcal{A}^{ast} f =sup_{N} lvert mathcal{A}_N f rvert$ satisfies $ (p,p)$ sparse bounds for all $ 1< p < 2$. The latter are the natural variants of the scale-free bounds. As a corollary, $ mathcal{A}^{ast} $ is bounded on $ ell ^{p} (w)$, for all weights $ w$ in the Muckenhoupt $A_p$ class. No prior weighted inequalities for $ mathcal{A}^{ast} $ were known.

تحميل البحث