Stable structure on safe set problems in vertex-weighted graphs


الملخص بالإنكليزية

Let $G$ be a graph, and let $w$ be a positive real-valued weight function on $V(G)$. For every subset $S$ of $V(G)$, let $w(S)=sum_{v in S} w(v).$ A non-empty subset $S subset V(G)$ is a weighted safe set of $(G,w)$ if, for every component $C$ of the subgraph induced by $S$ and every component $D$ of $G-S$, we have $w(C) geq w(D)$ whenever there is an edge between $C$ and $D$. If the subgraph of $G$ induced by a weighted safe set $S$ is connected, then the set $S$ is called a connected weighted safe set of $(G,w)$. The weighted safe number $mathrm{s}(G,w)$ and connected weighted safe number $mathrm{cs}(G,w)$ of $(G,w)$ are the minimum weights $w(S)$ among all weighted safe sets and all connected weighted safe sets of $(G,w)$, respectively. Note that for every pair $(G,w)$, $mathrm{s}(G,w) le mathrm{cs}(G,w)$ by their definitions. Recently, it was asked which pair $(G,w)$ satisfies the equality and shown that every weighted cycle satisfies the equality. In this paper, we give a complete list of connected bipartite graphs $G$ such that $mathrm{s}(G,w)=mathrm{cs}(G,w)$ for every weight function $w$ on $V(G)$.

تحميل البحث