Comprehensive geoneutrino analysis with Borexino


الملخص بالإنكليزية

This paper presents a geoneutrino measurement using 3262.74 days of data taken with the Borexino detector at LNGS in Italy. By observing $52.6 ^{+9.4}_{-8.6} ({rm stat}) ^{+2.7}_{-2.1}({rm sys})$ geoneutrinos (68% interval) from $^{238}$U and $^{232}$Th, a signal of $47.0^{+8.4}_{-7.7},({rm stat)}^{+2.4}_{-1.9},({rm sys})$ TNU with $^{+18.3}_{-17.2}$% total precision was obtained. This result assumes the same Th/U mass ratio found in chondritic CI meteorites but compatible results were found when contributions from $^{238}$U and $^{232}$Th were fit as free parameters. Antineutrino background from reactors is fit unconstrained and found compatible with the expectations. The null-hypothesis of observing a signal from the mantle is excluded at a 99.0% C.L. when exploiting the knowledge of the local crust. Measured mantle signal of $21.2 ^{+9.6}_{-9.0} ({rm stat})^{+1.1}_{-0.9} ({rm sys})$ TNU corresponds to the production of a radiogenic heat of $24.6 ^{+11.1}_{-10.4}$ TW (68% interval) from $^{238}$U and $^{232}$Th in the mantle. Assuming 18% contribution of $^{40}$K in the mantle and $8.1^{+1.9}_{-1.4}$ TW of radiogenic heat of the lithosphere, the Borexino estimate of the total Earth radiogenic heat is $38.2 ^{+13.6}_{-12.7}$ TW, corresponding to a convective Urey ratio of 0.78$^{+0.41}_{-0.28}$. These values are compatible with different geological models, however there is a 2.4$sigma$ tension with those which predict the lowest concentration of heat-producing elements. By fitting the data with a constraint on the reactor antineutrino background, the existence of a hypothetical georeactor at the center of the Earth having power greater than 2.4 TW at 95% C.L. is excluded. Particular attention is given to all analysis details, which should be of interest for the next generation geoneutrino measurements.

تحميل البحث