One of the primary challenges of system identification is determining how much data is necessary to adequately fit a model. Non-asymptotic characterizations of the performance of system identification methods provide this knowledge. Such characterizations are available for several algorithms performing open-loop identification. Often times, however, data is collected in closed-loop. Application of open-loop identification methods to closed-loop data can result in biased estimates. One method used by subspace identification techniques to eliminate these biases involves first fitting a long-horizon autoregressive model, then performing model reduction. The asymptotic behavior of such algorithms is well characterized, but the non-asymptotic behavior is not. This work provides a non-asymptotic characterization of one particular variant of these algorithms. More specifically, we provide non-asymptotic upper bounds on the generalization error of the produced model, as well as high probability bounds on the difference between the produced model and the finite horizon Kalman Filter.