Structure and size of the plastic zone formed during nanoindentation of a metallic glass


الملخص بالإنكليزية

Using molecular dynamics simulation, we study the plastic zone created during nanoindentation of a large CuZr glass system. The plastic zone consists of a core region, in which virtually every atom undergoes plastic rearrangement, and a tail, where the density distribution of the plastically active atoms decays to zero. Compared to crystalline substrates, the plastic zone in metallic glasses is significantly smaller than in crystals. The so-called plastic-zone size factor, which relates the radius of the plastic zone to the contact radius of the indenter with the substrate, assumes values around 1, while in crystals -- depending on the crystal structure -- values of 2--3 are common. The small plastic zone in metallic glasses is caused by the essentially homogeneous deformation in the amorphous matrix, while in crystals heterogeneous dislocations prevail, whose growth leads to a marked extension of the plastic zone.

تحميل البحث