Quantum Spin Liquid in a depleted triangular lattice Iridate K$_x$Ir$_y$O$_2$


الملخص بالإنكليزية

We report discovery of a new iridate family K$_x$Ir$_y$O$_2$ with depleted triangular lattice planes made up of edge sharing IrO$_6$ octahedra separated by K planes. Such a material interpolates between the triangular and honeycomb lattices and is a new playground for Kitaev physics. The materials are Mott insulators with $y = 1 - x/4$. Physical property measurements for the $x approx 0.85$ material are reported. Using magnetic susceptibility $chi$ versus temperature $T$ measurements we find $S_{eff} = 1/2$ moments interacting strongly with a Weiss temperature $theta approx - 180$~K and no magnetic order or spin freezing down to $T = 1.8$~K@. Heat capacity shows a broad maximum around $30$~K which is insensitive to magnetic fields and a $T$-linear low temperature behaviour with $gamma sim 10$~mJ/mol~K$^2$. These results are consistent with a gapless QSL state in K$_{0.85}$Ir$_{0.79}$O$_2$.

تحميل البحث