Essential singularities of fractal zeta functions


الملخص بالإنكليزية

We study the essential singularities of geometric zeta functions $zeta_{mathcal L}$, associated with bounded fractal strings $mathcal L$. For any three prescribed real numbers $D_{infty}$, $D_1$ and $D$ in $[0,1]$, such that $D_{infty}<D_1le D$, we construct a bounded fractal string $mathcal L$ such that $D_{rm par}(zeta_{mathcal L})=D_{infty}$, $D_{rm mer}(zeta_{mathcal L})=D_1$ and $D(zeta_{mathcal L})=D$. Here, $D(zeta_{mathcal L})$ is the abscissa of absolute convergence of $zeta_{mathcal L}$, $D_{rm mer}(zeta_{mathcal L})$ is the abscissa of meromorphic continuation of $zeta_{mathcal L}$, while $D_{rm par}(zeta_{mathcal L})$ is the infimum of all positive real numbers $alpha$ such that $zeta_{mathcal L}$ is holomorphic in the open right half-plane ${{rm Re}, s>alpha}$, except for possible isolated singularities in this half-plane. Defining $mathcal L$ as the disjoint union of a sequence of suitable generalized Cantor strings, we show that the set of accumulation points of the set $S_{infty}$ of essential singularities of $zeta_{mathcal L}$, contained in the open right half-plane ${{rm Re}, s>D_{infty}}$, coincides with the vertical line ${{rm Re}, s=D_{infty}}$. We extend this construction to the case of distance zeta functions $zeta_A$ of compact sets $A$ in $mathbb{R}^N$, for any positive integer $N$.

تحميل البحث