Accelerating lattice quantum field theory calculations via interpolator optimization using NISQ-era quantum computing


الملخص بالإنكليزية

The only known way to study quantum field theories in non-perturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on Noisy Intermediate-Scale Quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.

تحميل البحث