Terahertz sensing of 7nm dielectric film with bound states in the continuum metasurfaces


الملخص بالإنكليزية

Fingerprint spectral response of several materials with terahertz electromagnetic radiation indicates that terahertz technology is an effective tool for sensing applications. However, sensing few nanometer thin-film of dielectrics with much longer terahertz waves (1 THz = 0.3 mm) is challenging. Here, we demonstrate a quasi-bound state in the continuum (BIC) resonance for sensing of nanometer scale thin analyte deposited on a flexible metasurface. The large sensitivity originates from strong local field confinement of the quasi-BIC Fano resonance state and extremely low absorption loss of a low-index cyclic olefin copolymer substrate. A minimum thickness of 7 nm thin-film of germanium is sensed on the metasurface, which corresponds to a deep subwavelength length scale of {lambda}/43000, where {lambda} is the resonance wavelength. The low-loss, flexible and large mechanical strength of the quasi-BIC micro structured metamaterial sensor could be an ideal platform for developing ultrasensitive wearable terahertz sensors.

تحميل البحث