Probability representation of quantum dynamics using pseudostochastic maps


الملخص بالإنكليزية

In this work, we consider a probability representation of quantum dynamics for finite-dimensional quantum systems with the use of pseudostochastic maps acting on true probability distributions. These probability distributions are obtained via symmetric informationally complete positive operator-valued measure (SIC-POVM) and can be directly accessible in an experiment. We provide SIC-POVM probability representations both for unitary evolution of the density matrix governed by the von Neumann equation and dissipative evolution governed by Markovian master equation. In particular, we discuss whereas the quantum dynamics can be simulated via classical random processes in terms of the conditions for the master equation generator in the SIC-POVM probability representation. We construct practical measures of nonclassicality non-Markovianity of quantum processes and apply them for studying experimental realization of quantum circuits realized with the IBM cloud quantum processor.

تحميل البحث