Tunable strong coupling of two adjacent optical lambda/2 Fabry-Perot microresonators


الملخص بالإنكليزية

Optical half-wave microresonators enable to control the optical mode density around a quantum system and thus to modify the temporal emission properties. If the coupling rate exceeds the damping rate, strong coupling between a microresonator and a quantum system can be achieved, leading to a coherent energy exchange and the creation of new hybrid modes. Here, we investigate strong coupling between two adjacent lambda/2 Fabry-Perot microresonators, where the resonance of one microresonator can be actively tuned across the resonance of the other microresonator. The transmission spectra of the coupled microresonators show a clear anticrossing behavior, which proves that the two cavity modes are strongly coupled. Additionally, we can vary the coupling rate by changing the resonator geometry and thereby investigate the basic principles of strong coupling with a well-defined model system. Finally, we will show that such a coupled system can theoretically be modelled by coupled damped harmonic oscillators.

تحميل البحث