Ground state cooling of nanomechanical resonators by electron transport


الملخص بالإنكليزية

We discuss two theoretical proposals for controlling the nonequilibrium steady state of nanomechanical resonators using quantum electronic transport. Specifically?, we analyse two approaches to achieve the ground-state cooling of the mechanical vibration coupled to a quantum dot embedded between (i) spin-polarised contacts or (ii) a normal metal and a superconducting contact. Assuming a suitable coupling between the vibrational modes and the charge or spin of the electrons in the quantum dot, we show that ground-state cooling of the mechanical oscillator is within the state of the art for suspended carbon nanotube quantum dots operating as electromechanical devices.

تحميل البحث