Stochastic Approximation Proximal Method of Multipliers for Convex Stochastic Programming


الملخص بالإنكليزية

This paper considers the problem of minimizing a convex expectation function over a closed convex set, coupled with a set of inequality convex expectation constraints. We present a new stochastic approximation type algorithm, namely the stochastic approximation proximal method of multipliers (PMMSopt) to solve this convex stochastic optimization problem. We analyze regrets of a stochastic approximation proximal method of multipliers for solving convex stochastic optimization problems. Under mild conditions, we show that this algorithm exhibits ${rm O}(T^{-1/2})$ rate of convergence, in terms of both optimality gap and constraint violation if parameters in the algorithm are properly chosen, when the objective and constraint functions are generally convex, where $T$ denotes the number of iterations. Moreover, we show that, with at least $1-e^{-T^{1/4}}$ probability, the algorithm has no more than ${rm O}(T^{-1/4})$ objective regret and no more than ${rm O}(T^{-1/8})$ constraint violation regret. To the best of our knowledge, this is the first time that such a proximal method for solving expectation constrained stochastic optimization is presented in the literature.

تحميل البحث