Uniform timeslicing of dynamic graphs has been used due to its convenience and uniformity across the time dimension. However, uniform timeslicing does not take the data set into account, which can generate cluttered timeslices with edge bursts and empty timeslices with few interactions. The graph mining filed has explored nonuniform timeslicing methods specifically designed to preserve graph features for mining tasks. In this paper, we propose a nonuniform timeslicing approach for dynamic graph visualization. Our goal is to create timeslices of equal visual complexity. To this end, we adapt histogram equalization to create timeslices with a similar number of events, balancing the visual complexity across timeslices and conveying more important details of timeslices with bursting edges. A case study has been conducted, in comparison with uniform timeslicing, to demonstrate the effectiveness of our approach.