In this paper we study envy-free division problems. The classical approach to such problems, used by David Gale, reduces to considering continuous maps of a simplex to itself and finding sufficient conditions for this map to hit the center of the simplex. The mere continuity of the map is not sufficient for reaching such a conclusion. Classically, one makes additional assumptions on the behavior of the map on the boundary of the simplex (for example, in the Knaster--Kuratowski--Mazurkiewicz and the Gale theorem). We follow Erel Segal-Halevi, Frederic Meunier, and Shira Zerbib, and replace the boundary condition by another assumption, which has the meaning in economy as the possibility for a player to prefer an empty part in the segment partition problem. We solve the problem positively when $n$, the number of players that divide the segment, is a prime power, and we provide counterexamples for every $n$ which is not a prime power. We also provide counterexamples relevant to a wider class of fair or envy-free division problems when $n$ is odd and not a prime power. In this arxiv version that appears after the official publication we have corrected the statement and the proof of Lemma 3.4.