We use an unbiased, continuous-time quantum Monte Carlo method to address the possibility of a zero-temperature phase without charge-density-wave (CDW) order in the Holstein and, by extension, the Holstein-Hubbard model on the half-filled square lattice. In particular, we present results spanning the whole range of phonon frequencies, allowing us to use the well understood adiabatic and antiadiabatic limits as reference points. For all parameters considered, our data suggest that CDW correlations are stronger than pairing correlations even at very low temperatures. These findings are compatible with a CDW ground state that is also suggested by theoretical arguments.