Weak maximum principle for biharmonic equations in quasiconvex Lipschitz domains


الملخص بالإنكليزية

In dimension two or three, the weak maximum principal for biharmonic equation is valid in any bounded Lipschitz domains. In higher dimensions (greater than three), it was only known that the weak maximum principle holds in convex domains or $C^1$ domains, and may fail in general Lipschitz domains. In this paper, we prove the weak maximum principle in higher dimensions in quasiconvex Lipschitz domains, which is a sharp condition in some sense and recovers both convex and $C^1$ domains.

تحميل البحث