We prove that for a quasi-regular semiperfectoid $mathbb{Z}_p^{rm cycl}$-algebra $R$ (in the sense of Bhatt-Morrow-Scholze), the cyclotomic trace map from the $p$-completed $K$-theory spectrum $K(R;mathbb{Z}_p)$ of $R$ to the topological cyclic homology $mathrm{TC}(R;mathbb{Z}_p)$ of $R$ identifies on $pi_2$ with a $q$-deformation of the logarithm.