Pure Single Photons from Scalable Frequency Multiplexing


الملخص بالإنكليزية

We demonstrate multiphoton interference using a resource-efficient frequency multiplexing scheme, suitable for quantum information applications that demand multiple indistinguishable and pure single photons. In our source, frequency-correlated photon pairs are generated over a wide range of frequencies by pulsed parametric down conversion. Indistinguishable single photons of a predetermined frequency are prepared using frequency-resolved detection of one photon to control an electro-optic frequency shift applied to its partner. Measured photon statistics show multiplexing increases the probability of delivering a single photon, without a corresponding increase to multiphoton events. Interference of consecutive outputs is used to bound the single-photon purity and demonstrate the non-classical nature of the emitted light.

تحميل البحث