Motivated, in part, by the rise of permissionless systems such as Bitcoin where arbitrary nodes (whose identities are not known apriori) can join and leave at will, we extend established research in scalable Byzantine agreement to a more practical model where each node (initially) does not know the identity of other nodes. A node can send to new destinations only by sending to random (or arbitrary) nodes, or responding (if it chooses) to messages received from those destinations. We assume a synchronous and fully-connected network, with a full-information, but static Byzantine adversary. A general drawback of existing Byzantine protocols is that the communication cost incurred by the honest nodes may not be proportional to those incurred by the Byzantine nodes; in fact, they can be significantly higher. Our goal is to design Byzantine protocols for fundamental problems which are {em resource competitive}, i.e., the number of bits sent by honest nodes is not much more than those sent by Byzantine nodes. We describe a randomized scalable algorithm to solve Byzantine agreement, leader election, and committee election in this model. Our algorithm sends an expected $O((T+n)log n)$ bits and has latency $O(polylog(n))$, where $n$ is the number of nodes, and $T$ is the minimum of $n^2$ and the number of bits sent by adversarially controlled nodes. The algorithm is resilient to $(1/4-epsilon)n$ Byzantine nodes for any fixed $epsilon > 0$, and succeeds with high probability. Our work can be considered as a first application of resource-competitive analysis to fundamental Byzantine problems. To complement our algorithm we also show lower bounds for resource-competitive Byzantine agreement. We prove that, in general, one cannot hope to design Byzantine protocols that have communication cost that is significantly smaller than the cost of the Byzantine adversary.