We derive and compare various forms of local semicircle laws for random matrices with exchangeable entries which exhibit correlations that decay at a very slow rate. In fact, any $l$-point correlation will decay at a rate of $N^{-l/2}$. We call our ensembles emph{of Curie-Weiss type}, and Curie-Weiss($beta$)-distributed entries are admissible as long as $betaleq 1$.