The authors report in situ Auger electron spectroscopy (AES) of the surfaces of complex oxides thin films grown by pulsed laser deposition (PLD). The authors demonstrate the utility of the technique in studying chemical composition by collecting characteristic Auger spectra of elements from samples such as complex oxide thin films and single crystals as well as metal foils. In the case of thin films, AES studies can be performed with single unit cell precision by monitoring thickness during deposition with reflection high energy electron diffraction (RHEED). The authors address some of the challenges in achieving in situ and real time AES studies on complex oxide thin films grown by PLD. Sustained layer-by-layer PLD growth of a CaTiO3/LaMnO3 superlattice allows depth-resolved chemical composition analysis during the growth process. The evolution of the Auger spectra of the elements from individual layers were used to perform chemical analysis with monolayer-depth resolution.