We study the problem of preservation of canard connections for time discretized fast-slow systems with canard fold points. In order to ensure such preservation, certain favorable structure preserving properties of the discretization scheme are required. Conventional schemes do not possess such properties. We perform a detailed analysis for an unconventional discretization scheme due to Kahan. The analysis uses the blow-up method to deal with the loss of normal hyperbolicity at the canard point. We show that the structure preserving properties of the Kahan discretization imply a similar result as in continuous time, guaranteeing the occurrence of canard connections between attracting and repelling slow manifolds upon variation of a bifurcation parameter. The proof is based on a non-canonical Melnikov computation along an invariant separating curve, which organizes the dynamics of the map similarly to the ODE problem.