We investigate a long-range interaction between $64D_{5/2}$ Rydberg-atom pairs and antiblockade effect employing a two-color excitation scheme. The first color (pulse A) is set to resonantly excite the Rydberg transition and prepare a few seed atoms, which establish a blockade region due to strong long-range interaction between Rydberg-atom pairs. The second color (pulse B) is blue detuned relative to Rydberg transition and enables further Rydberg excitation of atoms by counteracting the blockade effect. It is found that a few seed atoms lead to a huge difference of the Rydberg excitation with pulse B. The dynamic evolution of antiblockade excitation by varying the pulse-B duration at 30-MHz blue detuning is also investigated. The evolution result reveals that a small amount of seed atoms can trigger an avalanche Rydberg excitation. A modified superatom model is used to simulate the antiblockade effect and relevant dynamic evolution. The simulations are consistent with the experimental measurements.