Averages along the Square Integers: $ell^p$ improving and Sparse Inequalities


الملخص بالإنكليزية

Let $fin ell^2(mathbb Z)$. Define the average of $ f$ over the square integers by $ A_N f(x):=frac{1}{N}sum_{k=1}^N f(x+k^2) $. We show that $ A_N$ satisfies a local scale-free $ ell ^{p}$-improving estimate, for $ 3/2 < p leq 2$: begin{equation*} N ^{-2/p} lVert A_N f rVert _{ p} lesssim N ^{-2/p} lVert frVert _{ell ^{p}}, end{equation*} provided $ f$ is supported in some interval of length $ N ^2 $, and $ p =frac{p} {p-1}$ is the conjugate index. The inequality above fails for $ 1< p < 3/2$. The maximal function $ A f = sup _{Ngeq 1} |A_Nf| $ satisfies a similar sparse bound. Novel weighted and vector valued inequalities for $ A$ follow. A critical step in the proof requires the control of a logarithmic average over $ q$ of a function $G(q,x)$ counting the number of square roots of $x$ mod $q$. One requires an estimate uniform in $x$.

تحميل البحث