Structural and magnetic properties of co-sputtered Fe0.8C0.2 thin films


الملخص بالإنكليزية

We studied the structural and magnetic properties of FeC~thin films deposited by co-sputtering of Fe and C targets in a direct current magnetron sputtering (dcMS) process at a substrate temperature (Ts) of 300, 523 and 773,K. The structure and morphology was measured using x-ray diffraction (XRD), x-ray absorption near edge spectroscopy (XANES) at Fe $L$ and C $K$-edges and atomic/magnetic force microscopy (AFM, MFM), respectively. An ultrathin (3,nm) $^{57}$FeC~layer, placed between relatively thick FeC~layers was used to estimate Fe self-diffusion taking place during growth at different Ts~using depth profiling measurements. Such $^{57}$FeC~layer was also used for $^{57}$Fe conversion electron M{o}ssbauer spectroscopy (CEMS) and nuclear resonance scattering (NRS) measurements, yielding the magnetic structure of this ultrathin layer. We found from XRD measurements that the structure formed at low Ts~(300,K) is analogous to Fe-based amorphous alloy and at high Ts~(773,K), pre-dominantly a tifc~phase has been formed. Interestingly, at an intermediate Ts~(523,K), a clear presence of tefc~(along with tifc~and Fe) can be seen from the NRS spectra. The microstructure obtained from AFM images was found to be in agreement with XRD results. MFM images also agrees well with NRS results as the presence of multi-magnetic components can be clearly seen in the sample grown at Ts~= 523,K. The information about the hybridization between Fe and C, obtained from Fe $L$ and C $K$-edges XANES also supports the results obtained from other measurements. In essence, from this work, experimental realization of tefc~has been demonstrated. It can be anticipated that by further fine-tuning the deposition conditions, even single phase tefc~phase can be realized which hitherto remains an experimental challenge.

تحميل البحث