Minimum k-critical bipartite graphs


الملخص بالإنكليزية

We study the problem of Minimum $k$-Critical Bipartite Graph of order $(n,m)$ - M$k$CBG-$(n,m)$: to find a bipartite $G=(U,V;E)$, with $|U|=n$, $|V|=m$, and $n>m>1$, which is $k$-critical bipartite, and the tuple $(|E|, Delta_U, Delta_V)$, where $Delta_U$ and $Delta_V$ denote the maximum degree in $U$ and $V$, respectively, is lexicographically minimum over all such graphs. $G$ is $k$-critical bipartite if deleting at most $k=n-m$ vertices from $U$ creates $G$ that has a complete matching, i.e., a matching of size $m$. We show that, if $m(n-m+1)/n$ is an integer, then a solution of the M$k$CBG-$(n,m)$ problem can be found among $(a,b)$-regular bipartite graphs of order $(n,m)$, with $a=m(n-m+1)/n$, and $b=n-m+1$. If $a=m-1$, then all $(a,b)$-regular bipartite graphs of order $(n,m)$ are $k$-critical bipartite. For $a<m-1$, it is not the case. We characterize the values of $n$, $m$, $a$, and $b$ that admit an $(a,b)$-regular bipartite graph of order $(n,m)$, with $b=n-m+1$, and give a simple construction that creates such a $k$-critical bipartite graph whenever possible. Our techniques are based on Halls marriage theorem, elementary number theory, linear Diophantine equations, properties of integer functions and congruences, and equations involving them.

تحميل البحث