Twisted bilayer graphene provides a new two-dimensional platform for studying electron interaction phenomena and flat band properties such as correlated insulator transition, superconductivity and ferromagnetism at certain magic angles. Here, we present strong evidence of correlated insulator states and superconductivity signatures in p-type twisted double-bilayer WSe$_2$. Enhanced interlayer interactions are observed when the twist angle decreases to a few degrees as reflected by the high-order satellites in the electron diffraction patterns taken from the 2H/3R-stacked domains reconstructed from a conventional Moire superlattice. In contrast to twisted bilayer graphene, there is no specific magic angle for twisted WSe$_2$. The flat band properties are observed at twist angles ranging from 1 to 4 degrees. The highest superconducting transition temperature observed by transport measurement is 6 K. Our work has facilitated future study in the area of flat band related properties in twisted transition metal dichalcogenide layered structures.