Device-independent quantum secure direct communication


الملخص بالإنكليزية

Device-independent not only represents a relaxation of the security assumptions about the internal working of the quantum devices, but also can enhance the security of the quantum communication. In the paper, we put forward the first device-independent quantum secure direct communication (DI-QSDC) protocol, where no assumptions are made about the way the devices work or on what quantum system they operate. We show that in the absence of noise, the DI-QSDC protocol is absolutely secure and there is no limitation for the communication distance. However, under practical noisy quantum channel condition, the photon transmission loss and photon state decoherence would reduce the communication quality and threaten its absolute security. For solving the photon transmission loss and decoherence problems, we adopt noiseless linear amplification (NLA) protocol and entanglement purification protocol (EPP) to modify the DI-QSDC protocol. With the help of the NLA and EPP, we can guarantee the absolute security of the DI-QSDC and effectively improve its communication quality.

تحميل البحث