Attosecond photoionization delays have mostly been interpreted within the single-particle approximation of multi-electron systems. The strong electron correlation between the photoionization channels associated with the 3p and 3s orbitals of argon presents an interesting arena where this single-particle approximation breaks down. Around photon energies of 42~eV, the 3s photoionization channel of argon experiences a ``Cooper-like minimum, which is exclusively the result of inter-electronic correlations with the 3p shell. Photoionization delays around this ``Cooper-like minimum have been predicted theoretically, but experimental verification has remained a challenge since the associated photoionization cross section is inherently very low. Here, we report the measurement of photoionization delays around the Cooper-like minimum that were acquired with the 100~kHz High-Repetition 1 laser system at the ELI-ALPS facility. We report relative photoionization delays reaching up to unprecedented values of 430 +/- 20~as, as a result of electron correlation. Our experimental results are in partial agreement with state-of-the-art theoretical results, but also demonstrate the need for additional theoretical developments.