Recently it was shown (I.A.Gruzberg, A. Klumper, W. Nuding and A. Sedrakyan, Phys.Rev.B 95, 125414 (2017)) that taking into account random positions of scattering nodes in the network model with $U(1)$ phase disorder yields a localization length exponent $2.37 pm 0.011$ for plateau transitions in the integer quantum Hall effect. This is in striking agreement with the experimental value of $2.38 pm 0.06$. Randomness of the network was modeled by replacing standard scattering nodes of a regular network by pure tunneling resp.reflection with probability $p$ where the particular value $p=1/3$ was chosen. Here we investigate the role played by the strength of the geometric disorder, i.e. the value of $p$. We consider random networks with arbitrary probability $0 <p<1/2$ for extreme cases and show the presence of a line of critical points with varying localization length indices having a minimum located at $p=1/3$.