As the three-dimensional analogs of graphene, Weyl semimetals display signatures of chiral anomaly which arises from charge pumping between the lowest chiral Landau levels of the Weyl nodes in the presence of parallel electric and magnetic fields. In this work, we study the pseudo chiral anomaly and its transport signatures in graphene ribbon with zigzag edges. Here pseudo refers to the case where the inverse of width of zigzag graphene ribbon plays the same role as magnetic field in three-dimensional Weyl semimetals. The valley chiral bands in zigzag graphene ribbons can be introduced by edge potentials, giving rise to the nonconservation of chiral current, i.e., pseudo chiral anomaly, in the presence of a longitudinal electric field. Further numerical results reveal that pseudo magnetoconductivity of zigzag graphene ribbons is positive and has a nearly quadratic dependence on the pseudofield, which is regarded as the transport signature of pseudo chiral anomaly.