Manin triples of 3-Lie algebras induced by involutive derivations


الملخص بالإنكليزية

For any $n$-dimensional 3-Lie algebra $A$ over a field of characteristic zero with an involutive derivation $D$, we investigate the structure of the 3-Lie algebra $B_1=Altimes_{ad^*} A^* $ associated with the coadjoint representation $(A^*, ad^*)$. We then discuss the structure of the dual 3-Lie algebra $B_2$ of the local cocycle 3-Lie bialgebra $(Altimes_{ad^*} A^*, Delta)$. By means of the involutive derivation $D$, we construct the $4n$-dimensional Manin triple $(B_1oplus B_2,$ $ [ cdot, cdot, cdot]_1,$ $ [ cdot, cdot, cdot]_2,$ $ B_1, B_2)$ of 3-Lie algebras, and provide concrete multiplication in a special basis $Pi_1cupPi_2$. We also construct a sixteen dimensional Manin triple $(B, [ cdot, cdot, cdot])$ with $dim B^1=12$ using an involutive derivation on a four dimensional 3-Lie algebra $A$ with $dim A^1=2$.

تحميل البحث